Abstract
We explore BPS quivers for D = 5 theories, compactified on a circle and geometrically engineered over local Calabi-Yau 3-folds, for which many of known machineries leading to (refined) indices fail due to the fine-tuning of the superpotential. For Abelian quivers, the counting reduces to a geometric one, but the technically challenging L2 cohomology proved to be essential for sensible BPS spectra. We offer a mathematical theorem to remedy the difficulty, but for non-Abelian quivers, the cohomology approach itself fails because the relevant wavefunctions are inherently gauge-theoretical. For the Cartan part of gauge multiplets, which suffers no wall-crossing, we resort to the D0 picture and reconstruct entire KK towers. We also perform numerical checks using a multi-center Coulombic routine, with a simple hypothesis on the quiver invariants, and extend this to electric BPS states in the weak coupling chamber. We close with a comment on known Donaldson-Thomas invariants and on how L2 index might be read off from these.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.