Abstract

This study was undertaken in order to investigate the effect of chronic treatment with 5′-chloro-5′-deoxy-(±)-ENBA, a potent and highly selective agonist of human adenosine A1 receptor, on thermal hyperalgesia and mechanical allodynia in a mouse model of neuropathic pain, the Spared Nerve Injury (SNI) of the sciatic nerve. Chronic systemic administration of 5′-chloro-5′-deoxy-(±)-ENBA (0.5 mg/kg, i.p.) reduced both mechanical allodynia and thermal hyperalgesia 3 and 7 days post-SNI, in a way prevented by DPCPX (3 mg/kg, i.p.), a selective A1 adenosine receptor antagonist, without exerting any significant change on the motor coordination or arterial blood pressure. In addition, a single intraperitoneal injection of 5′-chloro-5′-deoxy-(±)-ENBA (0.5 mg/kg, i.p.) 7 days post-SNI also reduced both symptoms for at least two hours. SNI was associated with spinal changes in microglial activation ipsilaterally to the nerve injury. Activated, hypertrophic microglia were significantly reduced by 5′-chloro-5′-deoxy-(±)-ENBA chronic treatment. Our results demonstrated an involvement of adenosine A1 receptor in the amplified nociceptive thresholds and in spinal glial and microglial changes occurred in neuropathic pain, without affecting motor coordination or blood pressure. Our data suggest a possible use of adenosine A1 receptor agonist in neuropathic pain symptoms.

Highlights

  • Neuropathic pain is a devastating disease that can seriously affect the quality of life

  • It has been demonstrated that Spared Nerve Injury (SNI) determines an enhancement of activated astrocytes and microglia in the ipsilateral dorsal horn in mice [6,36], and we show here that chronic treatment with 5′Cl5′d-(±)-ENBA

  • 5′Cl5′d-(±)-ENBA on the Gi-coupled A1AR over-expressed on astrocytes, which we found in the present study together with a combined peripheral action on the T-lymphocytes [37] and/or a direct neuronal A1AR activation

Read more

Summary

Introduction

Neuropathic pain is a devastating disease that can seriously affect the quality of life. A recent paper published by Zylka et al [29] reported a novel series of potent and selective A1AR agonists, which showed potent antinociceptive effects and lack of cardiovascular side effects Based on these findings, in this study we have evaluated the anti-neuropathic properties of a potent and highly selective agonist of human adenosine A1 receptor, the compound 5′-chloro-5′-deoxy-N6-(±)endo-norborn-2-yl)adenosine [5′-chloro-5′-deoxy-(±)-ENBA, 5′Cl5'd-(±)-ENBA, hA1AR (Ki) = 0.51 nM, hA2AAR (Ki) = 1,340 nM, hA2BAR (Ki) = 2,740 nM, hA3AR (Ki) = 1,290 nM, EC50 = 6.75 nM], whose pharmacokinetic and pharmacodynamic profiles as well as its acute nocifensive effect have been investigated in the formalin test in mice [15]. (i) mechanical allodynia and thermal hyperalgesia; (ii) motor coordination, blood pressure and heart rate; (iii) glial and microglial activation in the spinal cord

Results
Discussion
Animals
Spared Nerve Injury
Nociceptive Behaviour
Motor Coordination Behaviour
Non-Invasive Blood Pressure and Heart Rate Measurements
Spinal Cord Immunohistochemistry
Quantitative Image Analysis
Treatments
Findings
4.10. Statistical Analysis
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call