Abstract

We aimed to evaluate the association between the progressive stages of cervical neoplasia and DNA damage in 5-bp classical satellite DNA sequences from chromosome-1 in cervical epithelium and in peripheral blood lymphocytes using DNA breakage detection/fluorescence in situ hybridization (DBD-FISH). A hospital-based unmatched case-control study was conducted in 2011 with a sample of 30 women grouped according to disease stage and selected according to histological diagnosis; 10 with low-grade squamous intraepithelial lesions (LG-SIL), 10 with high-grade SIL (HG-SIL), and 10 with no cervical lesions, from the Unidad Medica de Alta Especialidad of The Mexican Social Security Institute, IMSS, Mexico. Specific chromosome damage levels in 5-bp classical satellite DNA sequences from chromosome-1 were evaluated in cervical epithelium and peripheral blood lymphocytes using the DBD-FISH technique. Whole-genome DNA hybridization was used as a reference for the level of damage. Results of Kruskal-Wallis test showed a significant increase according to neoplastic development in both tissues. The instability of 5-bp classical satellite DNA sequences from chromosome-1 was evidenced using chromosome-orientation FISH. In conclusion, we suggest that the progression to malignant transformation involves an increase in the instability of 5-bp classical satellite DNA sequences from chromosome-1.

Highlights

  • Various risk factors have been correlated with the development of cervical intraepithelial neoplasia (CIN), suggesting that the human papillomavirus (HPV) type 16, 18, 31, or 33 plays a pivotal role in this disease; additional chromosomal alterations seem to be necessary for the development and progression of CIN [1]

  • Our results suggest that 5 bp classical satellite DNA sequences contain a large number of constitutive alkali-labile sites that are correlated with the grade of neoplastic progression

  • The causes of cervical carcinogenesis are not completely understood, the application of DBD-FISH using specific probes to detect DNA damage in genomic regions that are sensitive to destabilization may provide an essential tool for identifying cells that are at risk of progression

Read more

Summary

Introduction

Various risk factors have been correlated with the development of cervical intraepithelial neoplasia (CIN), suggesting that the human papillomavirus (HPV) type 16, 18, 31, or 33 (high risk) plays a pivotal role in this disease; additional chromosomal alterations seem to be necessary for the development and progression of CIN [1]. Chromosomal anomalies in cervical tumors are either numerical, structural, or a mixture of both. Structural rearrangements of chromosome-1 (e.g., gains, deletions, translocations, and isochromosomes) have been described as the most frequent karyotypic changes in this type of tumor; for example,. The DNA breakage detection/fluorescence in situ hybridization (DBD-FISH) technique is a new procedure that allows cell-by-cell detection and quantification of DNA breakage in the whole genome or within specific DNA sequences. The alkali transforms DNA breaks into restricted single-stranded DNA (ssDNA) motifs, which can be detected via hybridization with specific or whole-genome fluorescent

Objectives
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.