Abstract

Flank milling is of importance to machining aircraft structural parts, turbines, blades and several other mechanical parts. It decreases manufacturing time, enhances quality and reduces cost. Since flank milling developable ruled surfaces do not contain geometrical errors, research on flank milling focuses on the generation of optimal tool trajectory for non-developable ruled surfaces, even generic free-form surfaces. This includes: envelope surfaces, geometrical errors (overcut, undercut), energy optimization in tool movement, surface deviations, tool geometry adaptation, tool wear and temperature, and surface roughness. In this article we present a survey on flank milling as well as suggesting guidelines for future considerations in solving flank milling tool trajectory optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.