Abstract

Isoxazoles are an important class of compounds of potential therapeutic value. The aim of this study was to determine immunotropic effects of 5-amino-3-methyl-4-isoxazolecarboxylic acid hydrazide derivatives on spontaneous and mitogen-induced lymphocyte proliferation in young and old mice, cytokine production by peritoneal cells as well as possible mechanism of action in a model of Jurkat cells. Three-month-old and 13-month-old BALB/c mice were used as donors of the cells from a thymus, a spleen, mesenteric lymph nodes, and a peritoneal cavity. Spontaneous and concanavalin A or lipopolysaccharide (LPS)-induced cell proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide colorimetric method. IL-1β and TNF-α production induced by LPS in macrophage-enriched peritoneal cell cultures was measured by enzyme-linked immunoassay. 5-amino-3-methyl-4-isoxazolecarboxylic acid hydrazide, 01K (4-phenyl-1-(5-amino-3-methylisoxazole-4-carbonyl)-thiosemicarbazide), and 06K (4-(4-chlorophenyl)-1-(5-amino-3-methylisoxazole-4-carbonyl)-thiosemicarbazide) exhibited regulatory activity in the proliferation tests. Prevailing stimulatory activity of the hydrazide and inhibitory activity of 01K and 06K was observed. Those effects were connected with different influence of the compounds on signaling proteins expression in Jurkat cells. The regulatory effects of the compounds on IL-1β production were more profound than those on TNF-α. Differences in the compound activity in young versus old mice were mainly restricted to 01K. Immunosuppressive isoxazole leflunomide and a stimulatory RM-11 (1,7-dimethyl-8-oxo-1,2H-isoxazole [5,4-e]triazepine) were applied as reference drugs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.