Abstract
We introduce a new type of meshes called 5–6–7 meshes. For many mesh processing tasks, low- or high-valence vertices are undesirable. At the same time, it is not always possible to achieve complete vertex valence regularity, i.e. to only have valence-6 vertices. A 5–6–7 mesh is a closed triangle mesh where each vertex has valence 5, 6, or 7. An intriguing question is whether it is always possible to convert an arbitrary mesh into a 5–6–7 mesh. In this paper, we answer the question in the positive. We present a 5–6–7 remeshing algorithm which converts a closed triangle mesh with arbitrary genus into a 5–6–7 mesh which (a) closely approximates the original mesh geometrically, e.g. in terms of feature preservation and (b) has a comparable vertex count as the original mesh. We demonstrate the results of our remeshing algorithm on meshes with sharp features and different topology and complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.