Abstract
Combustion dynamics constitutes one of the most challenging areas in combustion research. Many facets of this subject have been investigated over the past few decades for their fundamental and practical implications. Substantial progress has been accomplished in understanding analysis, modeling, and simulation. Detailed laboratory experiments and numerical computations have provided a wealth of information on elementary dynamical processes such as the response of flames to variable strain, vortex rollup, coupling between flames and acoustic modulations, and perturbed flame collisions with boundaries. Much recent work has concerned the mechanisms driving instabilities in premixed combustion and the coupling between pressure waves and combustion with application to the problem of instability in modern low NOx heavyduty gas turbine combustors. Progress in numerical modeling has allowed simulations of dynamical flames interacting with pressure waves. On this basis, it has been possible to devise predictive methods for instabilities. Important efforts have also been directed at the development of the related subject of combustion control. Research has focused on methods, sensors, actuators, control algorithms, and systems integration. In recent years, scaling from laboratory experiments to practical devices has been achieved with some successebut limitations have also been revealed. Active control of combustion has also evolved in various directions. A number of experiments on laboratory-scale combustors have shown that the amplitude of combustion instabilities could be reduced by applying control principles. Full-scale terrestrial application to gas turbine systems have allowed an increase of the stability margin of these machines. Feedback principles are also being explored to control the point of operation of combustors and engines. Operating point control has special importance in the gas turbine field since it can be used to avoid operation in unstable regions near the lean blowoff limits. More generally, closed loop feedback concepts are useful if one wishes to improve the combustion process as demonstrated by applications to automotive engines. Many future developments of combustion will use such concepts for tuning, optimization, and emissions reduction. This article proposes a broad survey of these fast-moving areas of research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.