Abstract
55Mn pulse ENDOR experiments at 34 GHz (Q-band) are reported for the S0 and S2 states of the oxygen-evolving complex of photosystem II. Their numerical analysis (i) shows that in both states all four Mn ions are magnetically coupled, (ii) allows a refinement of the hyperfine interaction (HFI) parameters obtained earlier for the S2 state at X-band (Peloquin, J. M.; Campbell, K. A.; Randall, D. W.; Evanchik, M. A.; Pecoraro, V. L.; Armstrong, W. H.; Britt, R. D. J. Am. Chem. Soc. 2000, 122, 10926-10942), (iii) provides the first reliable 55Mn HFI tensors for the S0 state, and (iv) leads to the suggestion that the Mn oxidation states in S0 and S2 are Mn4(III, III, III, IV) and Mn4(III, IV, IV, IV), respectively. In addition, a Q-band EPR spectrum is reported for the S0 state, and inversion-recovery experiments at 4.5 K directly show that the electron spin-lattice relaxation for the S0 state is about 2 orders of magnitude faster than that for the S2 state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.