Abstract

Methods and apparatus for detecting biological activity within a sample are disclosed. The present invention provides a combination of a first and a second infrared light source arranged on the side of a sample vial, and a first and a second narrow-band infrared detector similarly arranged on the side of the vial approximately opposite the sources. The disclosed arrangement cancels the sources of error while measuring the carbon dioxide content of the headspace gas above the sample. In operation, the present invention sequentially measures the photocurrents generated at each detector with no source turned on, with the first source turned on, and with the second source turned on and the first source turned off. The CO2 absorption coefficient of the vial headspace gas is then calculated based on the photocurrents measured. This present invention allows compensation for source aging, detector aging, and vial wall thickness changes. Moreover, the present invention permits a determination of the absolute absorption coefficient at a selected wavelength, most preferably about 4.26 μm, which is the CO2 absorption characteristic wavelength. The determination of the absolute CO2 concentration within the headspace permits the detection of bacterial growth processes. Additionally, the disclosed source/detector combination can be produced at low cost. Thus, in preferred embodiments, the apparatus of the present invention comprises a plurality of vials that are simultaneously monitored by providing each of the plurality of vials with its own source/detector combination and activating and deactivating the sources and detectors using a multiplexer/demultiplexer arrangement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.