Abstract

Abstract Aims Left ventricular (LV) remodelling after myocardial infarction (MI) is promoted by an intense fibrotic response, which could be targeted by an anti-fibrotic drug such as pirfenidone. Methods and results We explored the relationship between protein modulation by pirfenidone and post-MI remodelling, based on publicly available molecular information and transcriptomic data from a swine model of MI. We also compared the effects of pirfenidone and angiotensin-converting enzyme inhibitors/angiotensin receptor blockers (ACEi/ARB), mineralocorticoid receptor blockers (MRA) and beta-blockers. We identified six causative motives of post-MI remodelling (cardiomyocyte cell death, impaired myocyte contractility, extracellular matrix remodelling and fibrosis, hypertrophy, renin–angiotensin–aldosterone system activation, and inflammation), 4 pirfenidone targets and 21 bioflags (indirect effectors). When considering both targets and bioflags, pirfenidone showed a broad relationship encompassing all six motives. p38γ-MAPK12 blockade inhibits cardiomyocyte apoptosis, cardiomyocyte hypertrophy and inflammation. Furthermore, pirfenidone can modulate extracellular matrix remodelling and cardiac fibrosis by targeting the TGFβ1-SMAD2/3 pathway and other effector proteins such as matrix metalloproteases 2 and 14, PDGFA/B, and IGF1, which promote myocardial fibrosis, cardiomyocyte hypertrophy and impaired contractility. All the gold standard drugs were found to be important for specific clinical motives, but pirfenidone had a more widespread action on the molecular pathways active in the post-MI setting. Conclusions A bioinformatic approach allowed to identify several possible mechanisms of action of pirfenidone with beneficial effects in the post-MI LV remodelling, and suggests additional effects over guideline-recommended therapies. These findings support clinical studies evaluating the beneficial effects of pirfenidone in patients with MI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.