Abstract
An estimation study on the output power and the efficiency of a new-designed axial flux permanent magnet synchronous generator (AFPMSG) is performed. For the estimation algorithm, a multi-layer feedforward artificial neural network (ANN) is developed. Various experimental results from the generator have been used for the training purpose in the cases of different electrical loads and rotational speeds. Some experimental data is kept out of the training process for testing the network and the errors have been evaluated after the formation of the network. According to the findings, a network with three layers has been adequate to achieve very good error percentage between the ANN and laboratory studies. The maximal testing error percentages are found to be nearly 3% and 4% for the output power and efficiency estimations, respectively. According to that finding, the developed ANN has a good property that it can be used in place of the designed generator, especially when the generator mathematical model is required. In addition, since power and efficiency are important for present applications, the present tool can be used to estimate the data for those characteristics of the machines and even it can be beneficial for the applications, where a nonlinear relationship among the power generation, generator efficiency, speed and load is required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.