Abstract

In this study, a new strategy for slow flow imaging is proposed. The basic idea is to generate flow contrast on a microscopic level below the spatial resolution of an imaging experiment. Since a microscopic spin tagging scheme is used, this concept is called MiST (Microscopic Spin Tagging). MiST is not a single specific measurement sequence, but rather a new flow sensitive preparation concept which is highly flexible and can be carried out in many ways. The common principle in all possible realizations of MiST is a periodic tagging of magnetization in thin planes (100–200 μm) within the imaging voxels by means of spatially selective RF-pulses. Therefore, flow sensitivity occurs via inflow of fresh spins on a microscopic scale. With this approach, short evolution times are sufficient to introduce inflow contrast and a spatial dependence of inflow times is avoided. The flow sensitive preparation and image orientation are also not connected as they are in conventional time-of-flight techniques. Another powerful feature of MiST is that it can be designed as a non-subtraction method, which results in no signal from stationary spins. Here we present a first realization of the MiST concept and its validation in quantitative flow measurements to demonstrate the feasibility of the proposed preparation concept.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.