Abstract
Ethylene is integrally involved in the ripening of climacteric fruit. The ability to prevent ethylene action, or manipulate fruit sensitivity to ethylene, would provide a powerful means of extending postharvest storage life of these fruit, particularly for those that ripen rapidly and/or that are not tolerant of low-temperature storage. In this study, 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action, was used to investigate ripening, respiration, and ethylene production in avocado fruit. `Monroe' avocados were treated with 1-MCP (Ethylbloc®) for 24 h at 20 °C. The fruit were subsequently stored at 13 or 20 °C. Some fruit were exposed to 100 ppm ethylene at 13 and 20 °C before or after MCP treatment. As evaluated by flesh firmness, respiration rate, and ethylene evolution, 1-MCP completely inhibited the ripening of avocado fruit stored at 13 and 20 °C and 85% relative humidity. Ethylene evolution and respiration rates were dramatically depressed, greater than 95% and 52%, respectively, by 1-MCP. Whereas firmness of control fruit decreased from over 100 N to 10 N in as few as 7 days, fruit treated with 1-MCP remained firm (>45 N) for periods of up to 3 weeks at 13 °C. Treatment of avocado fruit with 100 ppm ethylene at 20 °C for 12 h did not overcome the influence of MCP treatment. Similarly, treatment with ethylene before MCP exposure did not circumvent the effects of the cyclic olefin on ripening. Current studies are addressing the effects of MCP concentration and exposure time on avocado ripening.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.