Abstract
A sequence controller (30) controls gradient pulse amplifiers (20) and a digital transmitter (24) to apply a conventional magnetic resonance imaging or spectroscopy sequence. One or more of the resonance excitation pulses includes a series of very small tip angle RF pulses (52, 70) applied in rapid succession substantially within the time interval of a normal RF excitation pulse (e.g. 10 msec.). A series of gradient pulses (58x, 58y, 72y, 72z) with linearly diminishing amplitudes and a repetition cycle that is an integer multiple of the duration of the very small tip angle RF pulses are applied such that an excitation trajectory in k-space follows a piecewise linear square spiral (FIG. 3 ) when gradients are applied along two axes or an octahedral spiral (FIG. 6 ) when a series of gradient pulses are applied along three axes. The subregion of resonance excitation is selectively shifted along one of the axes by applying a series of frequency offset pulses (66, 76) along one or more of the axes. In this manner, the position of the subregion of resonance excitation is shifted without changing the phase component of the RF pulses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.