Abstract

The Sacramento Peak Observatory's 40 cm coronagraph was used with an emission line photometer to observe the distribution of λ5303 Fe XIV brightness as a function of position angle, height above the limb, and time. These data were used to construct models of the volume emissivity as a function of solar latitude and longitude. These models in turn yield estimates of the distribution of electron density in the lower solar corona as a function of latitude and longitude for several specific periods in 1973 and 1975. Three observational results are obtained. An upper limit for the inferred electron density in coronal hole regions is set at log Ne = 7.4 for an altitude of 1.15R⊙. Density models from late 1973 demonstrate an evolutionary trend toward a rather regular four-lobed appearance of coronal material; models from 1975 suggest that this characterization persisted for at least 27 solar rotations. A decrease in the total integrated λ5303 intensity of a factor of 2.9 is inferred to have taken place between 1973 and 1975.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.