Abstract
(51)V NMR parameters have been calculated for VOCl(3), the reference compound in (51)V NMR spectroscopy, in order to capture environmental effects in both the neat liquid and the solid state. Using a combination of periodic geometry optimizations and Car-Parrinello molecular dynamics simulations with embedded cluster NMR calculations, we are able to test the ability of current computational approaches to reproduce (51)V NMR properties (isotropic shifts, anisotropic shifts and quadrupole coupling constants) in the gas, liquid and solid states, for direct comparison with liquid and solid-state experimental data. The results suggest that environmental effects in the condensed phases can be well captured by an embedded cluster approach and that the remaining discrepancy with experiment may be due to the approximate density functionals in current use. The predicted gas-to-liquid shift on the isotropic shielding constant is small, validating the common practice to use a single VOCl(3), molecule as reference in (51)V NMR computations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.