Abstract

With recent advances in engineering and technology, a damage on industrial machineries performing high-speed and high-power requirements has become a problem. There is an increasing possibility of cavitation damage, especially in pumps, propellers and high-speed vessels in a flowing liquid accordingly. There are several factors affecting cavitation damage on materials, including viscosity, pressure, temperature, amplitude applied. In this study, effects of cavity pressure in seawater on the damage for 5083-O aluminium alloy were evaluated by modulating amplitude. Trend of the damage with respect to time and amplitude was analyzed comparatively, and surface degradation of specimens was investigated by using Scanning Electron Microscope(SEM) and 3D microscope. The result reveals that the amount of the damage increased consistently with the increase in time and amplitude while the plastic deformation zone where no appreciable damage occurred was in less than 30 minutes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.