Abstract

An NMR pulse sequence for use in the borehole environment is provided which combines a modified fast inversion recovery (FIR) pulse sequence with a series of more than ten, and typically hundreds, of CPMG pulses according to [W.sub.i -180-τ.sub.i -90-(t.sub.cp -180-t.sub.cp -echo).sub.j ].sub.i where j is the index of the CPMG echoes gathered, i is the index of the wait times in the pulse sequence, Wi are the wait times, i are the recovery times before the CPMG pulses, and tcp is the Carr-Purcell spacing. Measurements are made of the signals induced in the formation as a result of the magnetic fields. Determinations of Mo and/or T1 are then made from the measurements according to relationships which relate Mpo, T1 and T2 to the signal magnitude. Other relationships which provide stretched exponentials or multiple exponentials can also be used. From the Mo and/or T1 determinations, formation parameters such as porosity and permeability may be derived according to equations known in the art. In obtaining the most accurate determinations of formation parameters in the least amount of time, the various pulse sequence parameters (I, J, Wi, and τi) are optimized prior to logging. Additional accuracy is obtained by integrating a gated portion of the echoes rather than by measuring amplitude, and by utilizing a phase alternated CPMG sequence in repetitive measurements in order to eliminate baseline shift error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.