Abstract
To realize of passive-cooling high power fiber cladding light stripper, it is important to optimize the thermal management of both the fiber and the package. By using Teflon capillaries to make segmental etching configuration on fiber, using copper as the package material, and optimizing the package structure through finite element thermal simulations, cladding light stripper capable of handling 500 W power was designed and fabricated. It was experimentally verified that the stripping efficiency reached 23.7 dB and the temperature increase rate on the bare fiber of cladding light stripper was as low as 0.007 ℃/W. In addition, at 540 W of power injection, cladding light stripper could work continuously if mounted on water-cooled cold plate, and could work for 50 s each time if mounted on cold plate filled with phase-change material, with the maximum temperature of package being 58.7 ℃ and 80 ℃ respectively. The researches and results could provide valuable information to the design and development of high power fiber lasers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.