Abstract

High-temperature technology platform has been developed utilizing planar III-nitride heterostructures approach. The record high electron concentration and mobility in 2DEG channel of III-nitride devices result in very high operation speed and are remarkably stable within a broad temperature range, allowing device operation above 500 °C. The developed IC technology is based on three key elements: (1) exceptional quality III-nitride heterostructure with very high carrier concentration and mobility that enables IC fast operation in a broad temperature range; (2) heterostructure field effect transistor approach that provides fully planar IC structure which is easy to scale and to combine with the other high temperature electronic components; (3) robust design with self-compensating 2DEG load resistors, advance metallization and high-k passivation/gate dielectrics, specially developed for high temperature operation. The feasibility of technology was demonstrated by modeling, design and fabrication of inverter and differential amplifier type of ICs using III-nitride heterostructures. IC's performance was studied using probe station with heating chuck in ambient atmosphere. Temperature stability of structures with various barrier compositions was compared. At temperature exceeding 500 °C the developed ICs show the leakage currents below 10−7A, unit-gain bandwidth above 1 MHz and internal response time 45 ns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.