Abstract

Continued research into the development of III-V high-electron mobility transistors (HEMTs), specifically the minimization of the device gate length, has yielded the fastest performance reported for any three terminal devices to date. In addition, more recent research has begun to focus on reducing the parasitic device elements such as access resistance and gate fringing capacitance, which become crucial for short gate length device performance maximization. Adopting a self-aligned T-gate architecture is one method used to reduce parasitic device access resistance, but at the cost of increasing parasitic gate fringing capacitances. As the device gate length is then reduced, the benefits of the self-aligned gate process come into question, as at these ultrashort-gate dimensions, the magnitude of the static fringing capacitances will have a greater impact on performance. To better understand the influence of these issues on the dc and RF performance of short gate length InP pHEMTs, the authors present a comparison between In0.7Ga0.3As channel 50-nm self-aligned and standard T-gate devices. Figures of merit for these devices include transconductance greater than 1.9 S/mm, drive current in the range 1.4 A/mm, and fT up to 490 GHz. Simulation of the parasitic capacitances associated with the self-aligned gate structure then leads a discussion concerning the realistic benefits of incorporating the self-aligned gate process into a sub-50-nm HEMT system

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.