Abstract
In this study, we examine the use of capacitive micromachined ultrasonic transducers (CMUTs) with vacuum- sealed cavities for transmitting directional sound with parametric arrays. We used finite element modeling to design CMUTs with 40-microm- and 60-microm-thick membranes to have resonance frequencies of 46 kHz and 54 kHz, respectively. The wafer bonding approach used to fabricate the CMUTs provides good control over device properties and the capability to fabricate CMUTs with large diameter membranes and deep cavities. Each CMUT is 8 cm in diameter and consists of 284 circular membranes. Each membrane is 4 mm in diameter. Characterization of the fabricated CMUTs shows they have center frequencies of 46 kHz and 55 kHz and 3 dB bandwidths of 1.9 kHz and 5.3 kHz for the 40-microm- and 60-microm-thick membrane devices, respectively. With dc bias voltages of 380 V and 350 V and an ac excitation of 200 V peak-to-peak, the CMUTs generate average sound pressure levels, normalized to the device's surface, of 135 dB and 129 dB (re 20 microPa), respectively. When used to generate 5 kHz sound with a parametric array, we measured sound at 3 m with a 6 dB beamwidth of 8.7 degrees and a sound pressure level of 58 dB. To understand how detector nonlinearity (e.g., the nonlinearity of the microphone used to make the sound level measurements) affects the measured sound pressure level, we made measurements with and without an acoustic low-pass filter placed in front of the microphone; the measured sound levels agree with numerical simulations of the pressure field. The results presented in this paper demonstrate that large-area CMUTs, which produce high-intensity ultrasound, can be fabricated for transmitting directional sound with parametric arrays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.