Abstract

Purpose Earlier evidence suggests that extremely low frequency magnetic fields (ELF MFs) can modify the effects of carcinogenic agents. However, the studies conducted so far with ionizing radiation as the co-exposure agent are sparse and have provided inconclusive results. We investigated whether 50 Hz MFs alone, or in combination with ionizing radiation alter cell biological variables relevant to cancer and the biological effects of ionizing radiation. Materials and methods Human SH-SY5Y neuroblastoma cells were sham exposed or exposed to 100 or 500 µT MF for 24 h either before or after ionizing radiation exposure (0, 0.4 or 2 Gy). After the exposures, cells were assayed for viability, clonogenicity, reactive oxygen species, caspase-3 activity, and cell cycle distribution. Cell cycle distribution was assayed with propidium iodide staining followed by flow cytometry analysis and ROS levels were assayed together with cell viability by double staining with DeepRed and Sytox Blue followed by flow cytometry analysis. Results Increased caspase-3 activity was observed in cells exposed to 500 µT MF before or after ionizing radiation. Furthermore, exposure to the 500 µT MF after the ionizing radiation decreased the percentage of cells in S-phase. No changes in the ROS levels, clonogenicity, or viability of the cells were observed in the MF exposed groups compared to the corresponding sham exposed groups, and no MF effects were observed in cells exposed at 100 µT. Conclusions Only the 500 µT magnetic flux density affected SH-SY5Y cells significantly. The effects were small but may nevertheless help to understand how MFs modify the effects of ionizing radiation. The increase in caspase-3 activity may not reflect effects on apoptosis, as no changes were observed in the subG1 phase of the cell cycle. In contrast to some earlier findings, 50 Hz MF exposure after ionizing radiation was not less effective than MF treatment given prior to ionizing radiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.