Abstract

BackgroundSmall RNAs complex with proteins to mediate a variety of functions in animals and plants. Some small RNAs, particularly miRNAs, circulate in mammalian blood and may carry out a signaling function by entering target cells and modulating gene expression. The subject of this study is a set of circulating 30–33 nt RNAs that are processed derivatives of the 5′ ends of a small subset of tRNA genes, and closely resemble cellular tRNA derivatives (tRFs, tiRNAs, half-tRNAs, 5′ tRNA halves) previously shown to inhibit translation initiation in response to stress in cultured cells.ResultsIn sequencing small RNAs extracted from mouse serum, we identified abundant 5′ tRNA halves derived from a small subset of tRNAs, implying that they are produced by tRNA type-specific biogenesis and/or release. The 5′ tRNA halves are not in exosomes or microvesicles, but circulate as particles of 100–300 kDa. The size of these particles suggest that the 5′ tRNA halves are a component of a macromolecular complex; this is supported by the loss of 5′ tRNA halves from serum or plasma treated with EDTA, a chelating agent, but their retention in plasma anticoagulated with heparin or citrate. A survey of somatic tissues reveals that 5′ tRNA halves are concentrated within blood cells and hematopoietic tissues, but scant in other tissues, suggesting that they may be produced by blood cells. Serum levels of specific subtypes of 5′ tRNA halves change markedly with age, either up or down, and these changes can be prevented by calorie restriction.ConclusionsWe demonstrate that 5′ tRNA halves circulate in the blood in a stable form, most likely as part of a nucleoprotein complex, and their serum levels are subject to regulation by age and calorie restriction. They may be produced by blood cells, but their cellular targets are not yet known. The characteristics of these circulating molecules, and their known function in suppression of translation initiation, suggest that they are a novel form of signaling molecule.

Highlights

  • Small RNAs complex with proteins to mediate a variety of functions in animals and plants

  • Sequencing and computational analysis of small RNAs circulating in mouse serum While investigating the effects of aging and calorie restriction (CR) on the profiles of cell-free small RNAs circulating in the bloodstream, we used small RNA-Seq (Illumina reads of 50 nt) to compare the serum levels of small RNAs from young and old control mice, and old mice subjected to CR

  • Our findings indicate that tRNA fragments highly similar to tRNA-derived stress-induced fragments (tiRNAs) are present under normal conditions, and can remain stable even after they are released into the peripheral blood. 5′ but not 3′ tRNA fragments inhibit mRNA translation initiation in cultured cell lines [18]

Read more

Summary

Results

In sequencing small RNAs extracted from mouse serum, we identified abundant 5′ tRNA halves derived from a small subset of tRNAs, implying that they are produced by tRNA type-specific biogenesis and/or release. The 5′ tRNA halves are not in exosomes or microvesicles, but circulate as particles of 100–300 kDa. The 5′ tRNA halves are not in exosomes or microvesicles, but circulate as particles of 100–300 kDa The size of these particles suggest that the 5′ tRNA halves are a component of a macromolecular complex; this is supported by the loss of 5′ tRNA halves from serum or plasma treated with EDTA, a chelating agent, but their retention in plasma anticoagulated with heparin or citrate. A survey of somatic tissues reveals that 5′ tRNA halves are concentrated within blood cells and hematopoietic tissues, but scant in other tissues, suggesting that they may be produced by blood cells. Serum levels of specific subtypes of 5′ tRNA halves change markedly with age, either up or down, and these changes can be prevented by calorie restriction

Conclusions
Background
Results and discussion
Methods
Okamura K
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call