Abstract

Approved therapies for chronic hepatitis B include systemic administration of interferon (IFN)-alfa and inhibitors of hepatitis B virus (HBV) reverse-transcription. Systemic application of IFN-alfa is limited by side effects. Reverse-transcriptase inhibitors effectively control HBV replication, but rarely eliminate the virus and can select drug-resistant variants. We aimed to develop an alternative therapeutic approach that combines gene silencing with induction of IFN in the liver. To stimulate an immune response while inhibiting HBV activity, we designed 3 small interfering (si)RNAs that target highly conserved sequences and multiple HBV transcripts of all genotypes. A 5'-triphosphate (3p) was added to the siRNAs, turning them into a ligand for the cytosolic helicase retinoic acid-inducible protein I, which becomes activated and induces expression of type-I IFNs. Antiviral activity was investigated in cell lines that replicate HBV, in HBV-infected primary human hepatocytes, and in HBV transgenic mice. 3p-double-stranded RNA (3p-RNA) activated retinoic acid-inducible protein I, induced a strong type I IFN response (expression of IFN-β) in liver cells and showed transient but strong antiviral activity. Bifunctional, HBV-specific, 3p-siRNAs controlled replication of HBV more efficiently and for longer periods of time than 3p-RNAs without silencing capacity or siRNAs that targeted identical sequences but did not contain 3p. HBV-specific 3p-siRNAs are bifunctional antiviral molecules that induce production of type I IFNs in the liver and target HBV RNAs to inhibit viral replication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.