Abstract

This study investigated the bioaccessibility of folate in wheat bread baked with different ingredients and processing methods. Next, different matrices were spiked with 5-methyltetrahydrofolate, gallic acid (GA), or both to investigate the stability of 5-methyltetrahydrofolate during in vitro digestion. The folate bioaccessibility in bread varied from 44 to 96%. The inclusion of whole-grain or faba bean flour significantly improved both folate content and bioaccessibility. Baking with yeast increased the folate content by 145% in bread but decreased folate bioaccessibility compared to the bread without added yeast because of the instability of 5-methyltetrahydrofolate. Spiking experiments confirmed oxidation as a critical reason for 5-methyltetrahydrofolate loss during digestion. However, GA protected this vitamer from degradation. Additionally, 5-methyltetrahydrofolate was less stable in whole-grain wheat matrices than other matrices. This study demonstrated that the stability of 5-methyltetrahydrofolate is crucial for folate bioaccessibility in bread, and methods for stabilizing this vitamer should be further studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call