Abstract

Dialyzed extracts from human bone marrow catalyze [5- 14C]methyltetrahydrofolate homocysteine transmethylation at slow but significant rates which can be detected by using substrate with a very high specific radioactivity. Enzymatic activity is associated with nucleated marrow cells rather than mature, nondividing erythrocytes. Extract transmethylase activities in 15 marrow specimens from patients without B-12 deficiency ranged from 157–1020 pmoles of [ Me- 14C]methionine formed/hr/10 7 nucleated cells. Catalysis is dependent on S-adenosyl- l-methionine and a flavin-reducing system, typical for the presence of a cobalamin (B-12) methyltransferase. No in vitro requirement for exogenous B-12 was observed except for the marrow extracts from two patients known to be B-12 deficient. One of these extracts was markedly stimulated by methyl-B-12 indicative that mostly apomethyltransferase was present. These tracer assays with cell-free extracts provide the first direct evidence that human bone marrow contains B-12 methyltransferase; they also afford further evidence for a 5-methyltetrahydrofolate trap in B-12 deficiency with its associated megaloblastic anemia. In addition, we have observed that in normal peripheral blood leukocytes the mononuclear fraction contains 10–30 times as much B-12 methyltransferase per nucleated cell as the polymorphonuclear granulocyte fraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.