Abstract

Inhibiting microsomal prostaglandin E2 synthase-1 (mPGES-1), an inducible enzyme involved in prostaglandin E2 (PGE2) biosynthesis and tumor microenvironment (TME) homeostasis, is a valuable strategy for treating inflammation and cancer. In this work, 5-methylcarboxamidepyrrole-based molecules were designed and synthesized as new compounds targeting mPGES-1. Remarkably, compounds 1f, 2b, 2c, and 2d were able to significantly reduce the activity of the isolated enzyme, showing IC50 values in the low micromolar range. With the aim of further profiling the synthesized molecules, their ability to interfere with the activity of soluble epoxide hydrolase (sEH), whose inhibition blocks the loss of the anti-inflammatory mediators epoxyeicosatrienoic acids (EETs or epoxyicosatrienoic acids), was investigated in silico and by employing specific biological assays. Among the set of tested compounds, 1f, 2b, 2c, and 2d emerged as mPGES-1/sEH dual inhibitors. Moreover, given that overexpression of mPGES-1 has been observed in many human tumors, we finally explored the biological effect of our compounds in an in vitro model of human colorectal cancer (CRC). The obtained outcomes pave the way for future investigation to optimize and further characterize anticancer pharmacological profile of the carboxamidepyrrole-based molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.