Abstract
5-Lipoxygenase (5-Lox), an enzyme involved in the metabolism of arachidonic acid participates in the modulation of the proliferation and differentiation of neural stem cells and cerebellar granule cell (CGC) precursors. Since epigenetic mechanisms including DNA methylation regulate 5-LOX expression and have been suggested as possible modulators of stem cell differentiation and aging, using primary cultures of mouse CGC (1, 5, 10, 14, 30 days in vitro; DIV), we studied DNA methylation patterns of the 5-LOX promoter and 5-LOX mRNA levels. We also measured the mRNA and protein content of the DNA methyltransferases DNMT1 and DNMT3a. 5-LOX, DNMT1, and DNMT3a mRNA levels were measured by real-time PCR. We observed that 5-LOX expression and the expression of maintenance DNMT1 is maximal at 1 DIV (proliferating neuronal precursors), whereas the expression of the de novo DNA methyltransferase DNMT3a mRNA increased in aging cultures. We analyzed the methylation status of the 5-LOX promoter using the methylation-sensitive restriction endonucleases AciI, BstUI, HpaII, and HinP1I, which digest unmethylated CpGs while leaving methylated CpGs intact. The 5-LOX DNA methylation increased with the age of the cells. Taken together, our data show that as cultured CGC mature and age in vitro, a decrease in 5-LOX mRNA content is accompanied by an increase in the methylation of the gene DNA. In addition, an increase in DNMT3a but not DNMT1 expression accompanies an increase of 5-LOX methylation during in vitro maturation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.