Abstract

An oxidation-based synthetic approach was developed for facile preparation of 5-formyl-2'-deoxycytidine and 5-hydroxymethyl-2'-deoxycytidine phosphoramidites. Upon introducing organic solvent components and copper catalysts, C5-methyl groups of 5-methyl-2'-deoxycytidine and thymidine were readily oxidized to formyl and hydroxyl functionality, respectively. Standard solid phase DNA synthesis and conventional deprotection methods were applicable to synthesize 5-formyl- or 5-hydroxymethyl-cytosine containing DNA oligonucleotides, which were used to study the effect of epigenetic modifications on DNA thermal dynamic stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.