Abstract

5'-Hydroxy-6, 7, 8, 3', 4'-pentamethoxyflavone (5-HPF), a polymethoxyflavone compound found in dikamali gum, has been shown to exert a range of beneficial effects on health. We have previously reported that 5-HPF improves the cholinergic dysfunction and also possesses antioxidant properties in Caenorhabditis elegans. In this study, we have identified the effect of 5-HPF on the worm lifespan and its underlying molecular mechanisms. Out of the five tested pharmacological doses of 5-HPF, viz. 6.25, 12.5, 25, 50, and 100μM, the 50μM dose maximally extended the mean life of C. elegans by 28%. The present study revealed that 5-HPF supplementation leads to dietary restriction (DR)-like effects in the worms without altering bacterial metabolism. The analysis of mutant animals fed with 5-HPF suggested that the extended lifespan of C. elegans depends upon multiple DR-related signaling pathways, with NRF2 and FOXA being critical factors. Further investigation into the mechanistic aspects indicated that 5-HPF utilizes autophagy pathway induced by DR through the upregulation of autophagy genes bec-1 and lgg-1, evident from the increase in autophagic puncta in the seam cells of lgg-1::gfp tagged worms. This study identifies the longevity-promoting activity of 5-HPF in C. elegans regulated by oxidative stress-resistance genes and DR-induced autophagy pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call