Abstract

Virtually every patient affected by Parkinson's disease (PD) eventually requires treatment with L-3,4-dihydroxyphenylalanine (L-DOPA), which leads to complications such as dyskinesia and psychosis. Whereas blockade of serotonin 2A (5-HT2A) receptors appears to be an effective way to reduce both dyskinesia and psychosis, whether it has the potential to eliminate the two phenomena remains to be determined. In a previous study, we showed that highly selective 5-HT2A receptor blockade with EMD-281,014, at plasma levels comparable to those achieved in the clinic, reduced dyskinesia and psychosis-like behaviours (PLBs), in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmoset. Here, we sought to determine whether further increasing the dose would result in greater therapeutic benefit or if maximal effectiveness was achieved at lower doses. Six MPTP-lesioned marmosets with stable dyskinesia and PLBs were administered EMD-281,014 (0.1, 1 and 10mg/kg) or vehicle in combination with L-DOPA and the effect on dyskinesia, PLBs and parkinsonism was assessed. Administration of EMD-281,014 (0.1, 1 and 10mg/kg) in combination with L-DOPA resulted in a significant reduction in the severity of dyskinesia, by up to 63%, 64% and 61% (each P < 0.001), when compared to L-DOPA/vehicle. Similarly, the addition of EMD-281,014 (0.1, 1 and 10mg/kg) to L-DOPA also significantly decreased the severity of PLBs, by up to 54%, 55% and 53% (each P < 0.001), when compared to L-DOPA/vehicle. Our results suggest that there might be a ceiling to the reduction of dyskinesia and psychosis that can be achieved through antagonism of 5-HT2A receptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call