Abstract
The noradrenaline (NA) and serotonin reuptake inhibitor, sibutramine, gives effective weight loss, but full efficacy cannot be attained at approved doses due to cardiovascular side effects. We assessed in rats the contributions of NA and serotonin transporters to sibutramine's hypophagic and cardiovascular effects, and whether selective 5-hydroxytryptamine (5-HT(1A)) receptor activation could counteract the latter without affecting the former. Food intake was assessed in freely feeding rats and cardiovascular parameters in conscious telemetered rats. Ex vivo radioligand binding was used to estimate brain monoamine transporter occupancy. Sibutramine (1-10 mg/kg p.o.) dose-dependently reduced food intake; however, 10 mg/kg p.o. markedly elevated blood pressure and heart rate. Sibutramine gave greater occupancy of NA than serotonin reuptake sites. Coadministration of the selective 5-HT(1A) agonist F-11440 (2.5 mg/kg p.o.) attenuated sibutramine-induced hypertension and tachycardia without altering its food intake effects. The selective NA reuptake inhibitors, nisoxetine or reboxetine, did not alter food intake alone, but each reduced food intake when combined with F-11440. These results suggest that sibutramine-induced hypophagic and cardiovascular effects are largely due to increased brain synaptic NA via NA reuptake inhibition, and that 5-HT(1A) activation can counter the undesirable cardiovascular effects resulting from increased sympathetic activity. Selective NA reuptake inhibitors did not reduce food intake alone but did when combined with 5-HT(1A) activation. Hence increased synaptic serotonin, via serotonin reuptake inhibition or 5-HT(1A) activation, together with increased NA, would appear to produce hypophagia. Thus weight loss with minimal cardiovascular risk could be achieved by 5-HT(1A) activation combined with NA transporter blockade.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Obesity
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.