Abstract

In the nemertean worms Cerebratulus lacteus and Micrura alaskensis, 5-HT (=5-hydroxytryptamine, or serotonin) causes prophase-arrested oocytes to mature and complete germinal vesicle breakdown (GVBD). To identify the intracellular pathway that mediates 5-HT stimulation, follicle-free oocytes of nemerteans were assessed for GVBD rates in the presence or absence of 5-HT after being treated with various modulators of cAMP, a well known transducer of 5-HT signaling and an important regulator of hormone-induced maturation in general. Unlike in many animals where high levels of intra-oocytic cAMP block maturation, treatment of follicle-free nemertean oocytes with agents that elevate cAMP (8-bromo-cAMP, forskolin or inhibitors of phosphodiesterases) triggered GVBD in the absence of added 5-HT. Similarly, 5-HT caused a substantial cAMP increase prior to GVBD in nemertean oocytes that had been pre-injected with a cAMP fluorosensor. Such a rise in cAMP seemed to involve G-protein-mediated signaling and protein kinase A (PKA) stimulation, based on the inhibition of 5-HT-induced GVBD by specific antagonists of these transduction steps. Although the downstream targets of activated PKA remain unknown, neither the synthesis of new proteins nor the activation of MAPKs (mitogen-activated protein kinases) appeared to be required for GVBD after 5-HT stimulation. Alternatively, pre-incubation in roscovitine, an inhibitor of maturation-promoting factor (MPF), prevented GVBD, indicating that maturing oocytes eventually need to elevate their MPF levels, as has been documented for other animals. Collectively, this study demonstrates for the first time that 5-HT can cause immature oocytes to undergo an increase in cAMP that stimulates, rather than inhibits, meiotic maturation. The possible relationship between such a form of oocyte maturation and that observed in other animals is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.