Abstract

5-fluorouracil (5-FU) is a widely used chemotherapeutic drug for the treatment of a variety of solid tumors. The anti-tumor activity of 5-FU has been attributed in part to its ability to induce p53-dependent cell growth arrest and apoptosis. However, the molecular mechanisms underlying p53 activation by 5-FU remain largely obscure. Here we report that 5-FU treatment leads to p53 stabilization and activation by blocking MDM2 feedback inhibition through ribosomal proteins. 5-FU treatment increased the fraction of ribosome-free L5, L11, and L23 ribosomal proteins and their interaction with MDM2, leading to p53 activation and G1/S arrest. Conversely, individual knockdown of these ribosomal proteins by small interfering RNA prevented the 5-FU-induced p53 activation and reversed the 5-FU-induced G1/S arrest. These results demonstrate that 5-FU treatment triggers a ribosomal stress response so that ribosomal proteins L5, L11, and L23 are released from ribosome to activate p53 by ablating the MDM2-p53 feedback circuit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.