Abstract

From the mid-19th century, topological understanding progressed on various fronts. ‘Flavours of topology’ considers other areas such as differential topology, algebraic topology, and combinatorial topology. Geometric topology concerned surfaces and grew out of the work of Euler, Möbius, Riemann, and others. General topology was more analytical and foundational in nature; Hausdorff was its most significant progenitor and its growth mirrored other fundamental work being done in set theory. The chapter introduces the hairy ball theorem, and the work of great French mathematician and physicist Henri Poincaré, which has been rigorously advanced over the last century, making algebraic topology a major theme of modern mathematics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.