Abstract

A novel 5-DOF actively controlled self-bearing motor that combines the functions of a motor, two radial AMBs, and an axial AMB has been developed to achieve smaller size and higher performance simultaneously. In this paper, magnetic suspension performance of the 5-DOF controlled self-bearing motor is reported. First, radial control performance of the developed self-bearing motor is evaluated by the radial experimental setup. Next, tilt control performance and 5-DOF active control performance are evaluated by the 5-DOF experimental setup. Finally, the frequency response in the 5-DOF is measured with the contact-free levitation. The 5-DOF controlled self-bearing motor produced sufficient radial force and tilt control torque to overcome the radial negative stiffness and to stabilize the rotor. The sufficient frequency bandwidth was observed in the frequency response and the self-bearing motor successfully suppressed vibration at the resonant frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.