Abstract
Hepatic low-density lipoprotein receptor (LDLR) is the primary conduit for the clearance of plasma LDL-cholesterol and increasing its expression represents a central goal for treating cardiovascular disease. However, LDLR mRNA is unstable and undergoes rapid turnover mainly due to the three AU-rich elements (ARE) in its proximal 3′-untranslated region (3′-UTR). Herein, our data revealed that 5-azacytidine (5-AzaC), an antimetabolite used in the treatment of myelodysplastic syndrome, stabilizes the LDLR mRNA through a previously unrecognized signaling pathway resulting in a strong increase of its protein level in human hepatocytes in culture. 5-AzaC caused a sustained activation of the inositol-requiring enzyme 1α (IRE1α) kinase domain and c-Jun N-terminal kinase (JNK) independently of endoplasmic reticulum stress. This resulted in activation of the epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase1/2 (ERK1/2) that, in turn, stabilized LDLR mRNA. Systematic mutation of the AREs (ARE1-3) in the LDLR 3′UTR and expression of each mutant coupled to a luciferase reporter in Huh7 cells demonstrated that ARE1 is required for rapid LDLR mRNA decay and 5-AzaC-induced mRNA stabilization via the IRE1α-EGFR-ERK1/2 signaling cascade. The characterization of this pathway will help to reveal potential targets to enhance plasma LDL clearance and novel cholesterol-lowering therapeutic strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.