Abstract

Introduction: The Wnt/beta-catenin pathway is aberrantly activated in B cell lymphomas, unphosphorylated beta-catenin accumulates and translocates into the nucleus, regulates the expression of c-myc, cyclinD1 and many other target genes which govern fundamental cell functions, such as proliferation, cell cycle regulation and apoptosis. Methylation is a highlight of epigenetic regulation research which also occurred in lymphoma, but the concrete mechanism of how the demethylation drug 5-aza-2-deoxycytidine affect Wnt/beta-catenin pathway is still unknown. This study was designed to illuminate the implications on Wnt/beta-catenin pathway via demethylation 5-aza in B cell lymphoma.Methods: Peripheral blood mononuclear cells (PBMCs) were obtained from samples of 30 primary CLL patients. The PBMCs contained more than 90% of CD19+ B lymphocytes, which were detected by flow cytometry and were referred to as primary CLL cells. The activation of Wnt/beta-catenin pathway and DNMT-1 of B cell lymphoma cells lines (MEC-1, LY8, Jeko-1, Grant519, mino and sp53) and the 30 patients were detected by qPCR and western blot. The expressions of beta-catenin in 20 cases of B cell lymphoma tissues were measured by IHC. The B cell lines and PBMCs from 10 primary CLL patients were given 5-aza-2-deoxycytidine in different concentrations, the effects in the pathway and apoptosis were observed by WB and flow cytometry.Results: The expressions of beta-catenin, c-myc, cyclinD1 and DNMT-1 were aberrantly higher in all cell lines we used ( MEC-1,LY8, Jeko-1, Grant519, mino and sp53 Fig.1-A,B), most primary CLL patients (Fig.1-C), and B cell lymphoma tissues (Fig.1-D). The protein expressions of beta-catenin in MEC-1 were higer than primary CLL patients. 0, 0.5, 1.0, 2.0¦ÌM 5-aza-2-deoxycytidine were given to the B cells lines and PBMCs from primary CLL patients for 48h, beta-catenin were found accumulated, but c-myc and cyclinD1 in the downstream were reduced (Fig.2-A,B,C,D). For further understanding of aberrant accumulation ofbeta-catenin, we extracted the nuclear protein of MEC-1, nuclear beta-catenin protein expressions were found decreased and cytoplasmic were increased (Fig.2-E). After 5-aza treatment, the apoptosis rate increased and caspase pathway were activated (Fig.2-A,F).Conclusions: The enhanced expressions of beta-catenin, c-myc, cyclinD1 in the B cell lines and the B cell lymphoma samples indicated the Wnt/beta-catenin was aberrantly activated. After 5-aza treatment with the cell lines (MEC-1, Jeko-1, LY8) and primary CLL cells, the abnormal accumulation of beta-catenin protein was observed which was discrepancy with previous reports, but the decrease of c-myc and cyclinD1 suggested the pathway was inhibited, apoptosis also occurred. The increase of totalbeta-catenin protein was supposed to be an stress reaction of the 5-aza treatment, however, the redundant beta-catenin protein in B cell lymphoma was speculated to be combined with demethylated genes and resulted in dormancy of this pathway. Our results indicated that 5-aza played a demethylation role through Wnt/beta-catenin pathway in B cell lymphoma. The data are of interest in the context of epigenetic-based therapy in B cell lymphoma. [Display omitted] [Display omitted] DisclosuresNo relevant conflicts of interest to declare.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.