Abstract

BackgroundP16 methylation plays an important role in the pathogenesis of hyperoxia-induced lung fibrosis. 5-aza-2'-deoxycytidine (5-aza-CdR) is a major methyltransferase-specific inhibitor. In this study, the effects of 5-aza-CdR on a hyperoxia-induced lung fibrosis in neonatal rats were investigated.MethodsRat pups were exposed to 85% O2 for 21 days of and received intraperitoneal injections of 5-aza-CdR or normal saline (NS) once every other day. Survival rates and lung coefficients were calculated. Hematoxylin-eosin staining was performed to analyze the degree of lung fibrosis. Collagen content and TGF-β1 levels were determined. A methylation-specific polymerase chain reaction and western blotting were performed to determine P16 methylation status and P16, cyclin D1, and E2F1 protein expression.Results5-aza-CdR treatment during hyperoxia significantly improved the survival rate and weight gain, while it decreases the degree of lung fibrosis and levels of hydroxyproline and TGF-β1. Hyperoxia induced abnormal P16 methylation and 5-aza-CdR effectively reversed the hypermethylation of P16. Expression of the P16 protein in lung tissues was enhanced, while cyclin D1 and E2F1 protein were reduced by 5-aza-CdR treatment during hyperoxia.ConclusionThese data show that 5-aza-CdR attenuated lung fibrosis in neonatal rats exposed to hyperoxia by lowering hydroxyproline and TGF-β1 expression and via re-expression of P16 in neonatal rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.