Abstract

An efficient two-step synthetic pathway toward the preparation of diversely substituted 5-aroyl-3,4-dihydropyrimidin-2-ones is realized. The protocol involves an initial trimethylsilyl chloride-mediated Biginelli multicomponent reaction involving S-ethyl acetothioacetate, aromatic aldehydes, and ureas as building blocks to generate a set of 3,4-dihydropyrimidine-5-carboxylic acid thiol esters. These thiol esters serve as starting materials for a subsequent Pd-catalyzed Cu-mediated Liebeskind-Srogl cross-coupling reaction with boronic acids to provide the desired 5-aroyl-3,4-dihydropyrimidin-2-one derivatives. Both steps were performed using microwave heating in sealed vessels, either in an automated sequential or parallel format using dedicated microwave reactor instrumentation. A diverse library of 30 5-aroyl-3,4-dihydropyrimidin-2-ones was prepared with commercially available aldehyde, urea, and boronic acid building blocks as starting materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call