Abstract

A hemA mutant of Escherichia coli containing a multicopy plasmid which complemented the mutation excreted 5-aminolevulinic acid (ALA) into the medium. [1-14C]glutamate was substantially incorporated into ALA by this strain, whereas [2-14C]glycine was not. Periodate degradation of labeled ALA showed that C-5 of ALA was derived from C-1 of glutamate. The synthesis of ALA by two sonicate fractions which had been processed by gel filtration and dialysis, respectively, was dependent on glutamate, ATP, NADPH, tRNA(Glu), and pyridoxal phosphate. tRNA(Glu) stimulated ALA synthesis in a concentration-dependent manner. Pretreatment with RNase reduced this stimulation. The amino acid sequence of the cloned insert, derived from the nucleotide sequence (J.-M. Li, C. S. Russell, and S. D. Cosloy, J. Cell Biol. 107:617a, 1988), showed no homology with any ALA synthase sequenced to date. These results suggest that E. coli synthesizes ALA by the C5 pathway from the intact five-carbon chain of glutamate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.