Abstract
Bone metastases are associated with poor prognosis and low quality of life for the affected patients. Photodynamic therapy (PDT) emerges as a noninvasive therapy that can target local metastatic bone lesions. This paper presents an in vitro method to study the PDT effect in adherent cell lines. To this end, we demonstrate a step-by-step approach to subject both primary (giant cell bone tumor) and human bone metastatic cancer cell lines (derived from a primary invasive ductal breast carcinoma and renal carcinoma) to 5-aminolevulinic acid (5-ALA)-mediated PDT. After 24 h post 5-ALA-PDT irradiation (blue light-wavelength 436 nm), the therapeutic effect was assessed in terms of cell migration potential, viability, apoptotic features, and cellular growth arrest (senescence). Post 5-ALA-PDT irradiation, musculoskeletal-derived cell lines respond differently to the same doses and exposure of PDT. Depending on the extent of cellular damage triggered by PDT exposure, two different cell fates-apoptosis and senescence were noted. Variable sensitivity to PDT therapy among different bone cancer cell lines provides useful information for selecting more appropriate PDT settings in clinical settings. This protocol is designed to exemplify the use of PDT in the context of musculoskeletal neoplastic cell lines. It may be adjusted to investigate the therapeutic effect of PDT on various cancer cell lines and various photosensitizers and light sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.