Abstract

Studies were carried out on 5-aminolevulinic acid (ALA)-induced protoporphyrin (PpIX) synthesis in mice peritoneal macrophages and two human oral squamous cell carcinoma (OSCC) cell lines NT8e and 4451. Cells were treated with 200 μg/ml ALA for 15 h and PpIX accumulation was monitored by spectrofluorometry and phototoxicity to red light (630 ± 20 nm) was measured by MTT assay. PpIX accumulation was higher in macrophages as compared to OSCC cells under both normal serum concentration (10%) and conditions of serum depletion. The results on phototoxicity measurements correlated well with the levels of PpIX accumulation in both macrophages and cancer cells. While red light caused 20% phototoxicity in macrophages, no phototoxicity was seen in 4451 cells at 10% serum. Decrease in serum concentration to 5% and 1% led to higher phototoxicity corresponding to 40% and 70% in macrophages and 10% and 15% in 4451 cells. Similar results were obtained in NT8e cell line. Propidium iodide staining followed by fluorescence microscopic observations on photodynamically treated co-culture of murine or human macrophages and cancer cells showed selective damage to macrophages. These results suggest that in OSCC, macrophages would contribute more to tumor PpIX level than tumor cells themselves and PDT may lead to selective killing of macrophages at the site of treatment. Since macrophages are responsible for production and secretion of various tumor growth mediators, the effect of selective macrophage killing on the outcome of PDT would be significant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.