Abstract

This chapter discusses activation of cholera toxin by adenosine diphosphate (ADP)-ribosylation factors. Cholera toxin, a secretory product of Vibrio cholerae, is responsible in large part for the devastating fluid and electrolyte loss characteristic of cholera. The toxin is an oligomeric protein of 84 kDa, consisting of one A subunit (∼29 kDa) and five B subunits (11.6 kDa). The B oligomer is responsible for toxin binding to cell surface ganglioside G M1 [galactosyl-N-acetylgalactosaminyl-(N-acetylneuraminyl) galactosylglucosylceramide]. The A subunit is a latent ADP-ribosyltransferase; activation requires proteolysis near the carboxyl terminus in a domain between two cysteines. Reduction of the disulfide then releases the larger (22 kDa) catalytically active A1 protein (CTA1) and a smaller, carboxyl-terminal A2 protein (CTA2). ADP-ribosylation is responsible for the effects of the toxin on cells. The major ADP-ribose acceptor substrates for the A subunit are the regulatory guanine nucleotide-binding (G) proteins that couple membrane associated cell surface receptors with their intracellular effectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.