Abstract

This study focused on differences in vehicle-to-vehicle radio channel characteristics in the same region but different traffic density and speeds at 5.9 GHz (congestion and non-congestion). The continuous measurement campaign was conducted on a city expressway through the complex dense urban area in Wuhan, China. Small-scale channel characteristics including power delay profile, amplitude fading distribution, K-factor, delay spread and Doppler shift were obtained, respectively. Specifically, the cumulative distribution function of root mean square delay spreads and root mean square Doppler spreads in the non-congested scenario and congested scenario were all fitted well with Lognormal distribution. We also found out that different intensity of traffic and speed of vehicles have little effect on root mean square delay spreads, but have a big impact on root mean square Doppler spreads and level crossing rate. According to estimation outcomes, the V2V channel characteristics for urban areas in Chinese big city were different from the previous measured results under similar scenarios in Europe. Delay spread and level crossing rate in this study can provide significant references to design the wireless communication system for vehicle-to-vehicle channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call