Abstract

Oxidation of 5,15-dithiaporphyrin with meta-chloroperbenzoic acid afforded the corresponding S,S-tetraoxide in good yield. The resultant 5,5,15,15-tetraoxo-5,15-dithiaporphyrin exhibited the highly electron-deficient nature as elucidated by the electrochemical analysis and theoretical calculations. Treatment of tetraoxodithiaporphyrin with zinc(II) acetate and nickel(II) acetate provided the corresponding metal complexes efficiently. Owing to its enhanced Lewis acidity of the metal center by the electron-deficient ligand, the nickel complex underwent facile axial ligation to form pentacoordinate and hexacoordinate high-spin (S=1) complexes in solution and solid, respectively. The binding constant of pyridine to the NiII center was significantly higher than those of conventional porphyrin NiII complexes. Temperature-dependent magnetic susceptibility measurements of the high-spin NiII complex revealed the presence of weak ferromagnetic interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.