Abstract

The prostate gland depends on androgen stimulation for its development and growth. However, testosterone is not the major androgen responsible for growth of the prostate. Testosterone is converted to dihydrotestosterone (DHT) by the enzyme Δ 4, 3 ketosteroid, 5α-reductase in prostatic stromal and basal cells. DHT is primarily responsible for prostate development and the pathogenesis of benign prostatic hyperplasia (BPH). Inhibitors of 5α-reductase reduce prostate size by 20% to 30%. This reduction in glandular tissue is achieved by the induction of apoptosis, which is histologically manifested by ductal atrophy. Inhibition also diminishes the number of blood vessels in the prostate because of a reduction in vascular-derived endothelial growth factor. 5α-Reductase occurs as 2 isozymes, type 1 and type 2, with the prostate expressing predominantly the type-2 isozyme, and the liver and skin expressing primarily the type-1 isozyme. Patients have been identified with deficiencies in the type-2 5α-reductase, but not type 1. Knockout mice with the type-2 5α-reductase demonstrate a phenotype similar to that seen in men with 5α-reductase deficiency. Type-1 5α-reductase knockout male mice are phenotypically normal. Enzymatic activity for 5α-reductase or immunohistochemical detection has been noted in other genitourinary tissues, such as the epididymis, testes, gubernaculum, and corporal cavernosal tissue. Preputial skin predominately expresses the type-1 5α-reductase, whereas stromal cells in the seminal vesicle also express type-2 isozyme. However, epithelial cells in the epididymis, but not surrounding stroma, express type-1 5α-reductase. In addition to influencing prostatic growth, 5α-reductase also influences the expression of neuronal nitric-oxide synthase in the corpus cavernosum. The contribution of DHT in the serum, which is partially derived from type-1 5α-reductase in the liver and the small amount of type-1 5α-reductase in the prostate, may play a role in maintaining prostatic enlargement. Thus, in an effort to increase efficacy of treatment for BPH, clinical trials are under way using new drugs, such as GI-198745 (Glaxo-Wellcome, Research Triangle Park, NC), PNU 157706 (Pharmacia & Upjohn, Peapack, NJ), FR146687 (Fujisawa, Osaka, Japan), and LY 320236 (Lilly, Indianapolis, IN), which inhibit both the type-1 and type-2 5α-reductase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.