Abstract

V. B. Lazareva investigated 3-webs formed by shadow lines on a surface embedded in 3-dimensional projective space and assumed that the lighting sources are situated on 3 straight lines. The results were used, in particular, for the solution of the Blaschke problem of classification of regular 3-webs formed by pencils of circles in a plane. In the present paper, we consider a 4-web W formed by shadow surfaces on a hypersurface V embedded in 4-dimensional projective space assuming that the lighting sources are situated on 4 straight lines. We call the projective 4-space with 4 fixed straight lines a 4-axial space. Structure equations of 4-axial space and of the surface V , asymptotic tensor of V , torsions and curvatures of 4-web W, and connection form of invariant affine connection associated with 4-web W are found.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.