Abstract

Passivation engineering has been identified as an effective strategy to eliminate the targeted interfacial defects for improving the efficiency and stability of perovskite solar cells (PSCs). Herein, 4-trifluorophenylammonium iodide (CF3PhAI) is presented as a multifunctional passivation agent to modify buried SnO2/perovskite and perovskite/hole transport layer (HTL) interfaces. Upon incorporation of CF3PhAI between SnO2 and perovskite, CF3PhAI can chemically link to SnO2 via Lewis coordination and electrostatic coupling, thereby effectively passivating under-coordinated Sn and filling the oxygen vacancy. Meanwhile, CF3PhAI helps anchor PbI2 and organic cations (MA+/FA+) to control the crystallization of the perovskite. Consequently, reduced interfacial defects, homogeneous perovskite crystallites, and better energetic alignment can be simultaneously achieved. When CF3PhAI was further used to modify the perovskite/HTL interface, the fabricated PSCs yielded an impressive power conversion efficiency of 23.06% together with negligible J-V hysteresis. The unencapsulated devices exhibited long-term stability in wet conditions (91.8% efficiency retention after 1000 h) due to the water-resistant CF3PhAI. We also achieved good light soaking stability, maintaining 86.1% of its initial efficiency after aging for 720 h. Overall, our finding provides a promising strategy for modifying the dual contact interfaces of PSCs toward improved efficiency and stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.